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A model is derived f o r  describing and predicting human operator 
dynamic response during sudden changes i n  the vehicle or controlled 
element dynamics. Data upon which the  model is  based are presented 
also.  The model features d i s t inc t  modes of behavior which axe selected 
successively during the t rans i t ion  between the  i n i t i a l  and f i n a l  sta- 
t ionary tracking s i tuat ions.  
phase which is  modeled by the pretransit ion operator describing function 
i n  closed-loop control of the new controlled element dynamics. The next 
phase i s  characterized by nonlinear time optimal control. 
operator switches t o  t h e  quasi-linear describing f’unction appropriate t o  
closed-loop control of the new dynamics under s ta t ionary conditions. 

The first t ransi t ion mode i s  a retention 

Finally, the 

V 



. 

.. .. .. .. .. .. .. .. 1 I- INTRODU@CION. .. 
.. .. .. .. .. 1 Background. .. .. .. 

Transition Task. .. .. .. .. .. .. .. .. 2 

.. 3 Report Organization.. .. .. .. .. .. .. 

.. 

11- TRANSITION DATA . .. .. .. .. .. .. .. .. 4 

Experimental Conditions .. .. .. .. .. .. .. 4 
hta f o r  Simplified Controllea Elements.. .. .. .. 6 

.. 9 Data f o r  Unstable Controlled Elements .. .. .. 
Transition Duration.. .. .. .. .. .. .. .. 12 

111. OPERATOR RESPONSE MODEL . .. .. .. .. .. . a  14 

Temporal Phases of a Transition Model .. .. .. .. 14 
The Resultant Transition Model. .. .. .. .. .. 24 

Limitations of the Transition Model. .. .. .. .. 28 

IV* CONCLUSIONS AND RECOMMENDATIONS .. .. .. .. .. 30 

Conclusions . . .. .. .. .. .. .. .. .. 30 
Recommendations. .. .. .. .. .. .. .. . . 31 

REFERENCES .. .. .. .. .. . . . .  .. .. .. .. 32 

v i i  



1 . 
2 . 
3 

4 . 
5 

6 . 
79 

8 . 
9 

10 . 
11 . 
12 . 
13 . 
14 . 
15 

16 . 
17 

18 . 
19 . 
20 . 
21 

Experimental configuration (ref . 7) . . 
Forcing function spectrum .. .. .. 
Transition from +8 t o  +2 (ref . 5) . . .  
Transition from +8 t o  &/s (ref . 5) . . 
Transition from -4/s2 t o  +8/s2 (ref . 5) 
Transition from +2 t o  -8/s2 (ref . 5) . . 
Transition from +8/s2 t o  -1 6/62 (ref . 5) 

.. 

.. 

.. 

.. 

.. 

.. 

.. 
Transition from 4/s to -8/s(s . 0.2) (ref . 8) 

Transition from 4/s t o  +8/s( s . 0.4) (ref . 8) 

Transition from 4/s t o  -8/s( s . 0.8) (ref . 8) 
Transition from 4/s t o  +8/s( s . 1 . 0 )  (ref . 8) 

Transition from 4/s t o  +8/s(s - 1.3) (ref . 8) 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 
4 .. 

.. 

.. 
Phase plane t ra jectory f o r  t ime-optiml control of b2/s2 .. 
Phase plane t ra jectory f o r  t ime-optiml control of .. .. .. .. .. .. .. .. .. KC2/S("  . 4- 
T.ime-opt%l control f o r  unstable controlled element .. .. 
Ideal response fo r  b l / s  . K c 2 / s ( s  . a) t rans i t ion  .. .. 
Effect of pulselike control .. .. .. .. .. .. .. 
Time-optimal control fo r  f i r s t -order  system . . .  .. .. 
Phase plane t ra jec tor ies  f o r  f i r s t -order  system .. .. .. 
Time-optirnal control f o r  second-order system .. .. .. 
Phase plane t ra jec tor ies  fo r  simple second-order system .. 

. -ge 

4 

5 

7 

7 

7 

8 

8 

10 

1 0  

10 

11 

11  

1 6  

18 

18 

19 

20 

24 

26 

27 

27 

v i i i  



I. Simplified Controlled Element Transition kta .. .. .. 6 

11. &ita Description.. .. .. .. .. .. .. .. .. 21 

111. Effect of Stick Reversal on E r r o r  Signal .. .. .. .. 23 

.. 25 IT. Mode-Switching Tmnsition Model S m r y  .. .. .. 

ix 



. 

c 

e 

e0 

i 

K 

Q1 

Q2 

m 

m2 

M 

S 

t 

aywBoIs 

Opemtor output o r  s t ick  deflection 

System er ror  

System e r ro r  rate 

System e r ro r  acceleration 

PlkLximUm e r ro r  during t rans i t ion  response 

System forcing function or  input 

Controlled element gain 

Pretransit ion controlled element gain 

Post tEris i t ion caritrolled element gain 

System output 

Output of pretmnsi t ion controlled element 

Output of posttransit ion controlled element 

Operator output (bang) amplitude 

Laplace transform variable 

Time 

Time of controlled element t ransi t ion 

Time of first control reversal  

Time of second control reversal  

Time of mode-switch t o  posttransit ion steady s t a t e  

Controlled element dynamics 

Pretransit ion Controlled element dynamics 

Post t ransi t ion controlled element dynamics 

Quasi-linear describing function f o r  operator dynamics 

Pretransi t ion describing f’unction f o r  operator dynamics 

xi 



Posttransit ion describing function f o r  operator dynamics yP2 

a. Inverse time constant 

@ii Forcing function power spectrum 

o Angular frequency 

xii 



8 

I. INTRaDUcTIOlo 

Background 

The study of h m n  operator response in  the presence of rapidly 

changing controlled element dynamics has important implications f o r  the 

mnual  control of aerospace vehicles. 

lar control following the failure of pa r t  of the  f l i g h t  control system, 

a s t a b i l i t y  augmenter, o r  a change i n  the configuration such as that 

caused by a large s h i f t  i n  the center of gravity. 

controlled element dynamics need not be confined t o  emergencies, but m y  

be a rnatter of routine. The mnual  control of boost, f o r  example, can 

involve nearly s tepl ike changes i n  the  controlled element when staging 
coincides witin a chs,rGe i r ?  %he control effectiveness due t o  the employment 

of a new set of thrusters .  

Results can be applied t o  vehicu- 

These changes i n  

There a r e  two general types of controlled element t ransi t ion.  One is  

re la t ive ly  slow, w i t h  the dynamics changing gradually over a period of a 

few seconds o r  longer. The second involves a sudden o r  steplike change, 

and th i s  i s  the type of pr-ry interest .  

Sheridan (refs. 1 and 2) studied gradual changes i n  the controlled 

element from pure gain, K, t o  pure integration, K/s, and vice versa i n  

both compensatory and pursuit  tracking. 

were completed i n  about 6 sec, and operator adaptation as measured by the 

mean square e r ror  w a s  completed i n  about 13 sec. 

The changes i n  controlled element 

A pioneering study by Sadoff ( ref .  3 )  compared the response of sk i l led  

p i l o t s  t o  s tepl ike changes i n  the controlled element i n  both fixed-base 

and moving-cab simulators. A longitudinal pi tch a t t i t ude  tracking task 

was used, and the t rans i t ion  simulated failures of systems which augmented 

either s t a t i c  s t a b i l i t y  o r  pi tch damping. 

adverse e f f ec t  i n  most cases on the p i l o t ' s  a b i l i t y  t o  adapt t o  the damper 

fa i lures ,  as evidenced by larger  mean square errors  during t rans i t ion  and 

longer t r ans i t i on  times. In  another experiment, t he  adverse e f fec t  of 

motion cues was reduced s ignif icant ly  by u t i l i z ing  a side-stick rnanipulator 

with arm res t ra in t .  

The cab motion ha6 8 ~ I g i f i c a t .  

These results (ref.  3 )  represent the only extant data 
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f o r  the highly r e a l i s t i c  conditions of moving-cab simulator, a i rcraf t - type 

control s t ick,  and sk i l led  test p i l o t  subjects. 

Extensive experimental research on operator response t o  s tep controlled 

element tmns i t ions  has been accomplished by Elkind and associates 

(refs . 4 - 8) . 
tracking tasks i n  the presence of low frequency random-appearing forcing 

functions. 

w a s  fixed-base. 
t ransi t ion response, and t o  date these largely emphasize the detection Of 

t ransi t ion occurrence and ident i f icat ion of the new controlled element 
ciynamics (e.g., refs. 9 and 10). 

These studies have a l l  involved single-axis compensatory 

A side-stick type of manipulator was used, and the f a c i l i t y  
They have derived some analytical models of operator 

The study reported herein i s  intended t o  complement the previous work. 

It is  a model building e f for t ,  w i t h  the objective of deriving an analyti- 

c a l  model useful i n  predicting operator t rans i t ion  response. 
use i s  mde of experimental data from other sources. A r e a s  t h a t  have been 
t reated in  depth elsewhere, such as detection c r i t e r i a ,  and the e f fec ts  of 

learning, a le r t ing ,  and uncertainty about the new dynamics a re  given only 
s l i gh t  consideration. 

Extensive 

TPransltlon mek 

The operator i s  assumed t o  be performing a single-axis compensatory 

tracking task i n  the presence of a low frequency random-appearing forcing 
function. 

are used, and a t  the t i m e  of t rans i t ion  a step change is  mde from one 

form t o  another. The change can involve a difference i n  any or  a l l  of 

order, gain magnitude, or polarity.  The operator i s  not a le r ted  t o  the 

time of t ransi t ion nor t o  w h a t  the new controlled element w i l l  be. 

Controlled element dynamics such as the  forms K, K/s, o r  K/s2 

Transitions which yield an unstable closed-loop system when pretransi t ion 

operator adaptation is  retained a r e  of par t icu lar  i n t e re s t ,  because they 

require immediate corrective act ion t o  r e t a in  control. 

f o r  any of the following controlled element changes: 
This w i l l  occur 

1 .  Sufficiently large gain increase 

2. Polarity reversal  

2 



3 .  Increase i n  effect ive controlled element order 
( fo r  suf f ic ien t ly  huge  gain)  

These are a l l  considered i n  t h i s  study. 

Report Organieation 

The second section of the rep.ort presents operator t rans i t ion  response 

data, together with a more detailed description of the experimental 
procedure. 

error ,  and opemtor output because t h e  inherent nonstationarity of the 
process mkes conventional s t a t i s t i c a l  techniques inappropriate. 

The d a t a  are given as time his tor ies  of forcing function, 

The third section examines and interprets  the data, with the objective 

of modeling the operator's t ransi t ion response. 

i s  ultimateiy derive& 5y b & x t i c n .  

of operator behavior, including: 

A "mode-switching'' m o d e l  

Thi~ model features successive phases 

1 .  Pretransit ion steady s t a t e  

2. 

3. Opt iml  control 

4. 

Retention of pretmnsi t ion operator adaptation 

Adjustment of posttransit ion steady state 

The operator 's  en t i r e  t rans i t ion  response i s  defined f o r  modeling purposes 

i n  terms of e i the r  duration, solution t o  an optimal control problem, o r  

the quasi-linear describing function fo r  compensatory tracking under 

s ta t ionary conditions. 

l imitat ions of the exis t ing model. 

This section concludes by sunrmarizing the 

The f inal  section of the report  presents conclusions about the derived 

model and t rans i t ion  response i n  general. 

experimental work t o  a l l ev ia t e  current deficiencies are given also.  

Recommendations f o r  addi t ional  

3 



11. TRANSnION DATA 

* 

The operator i s  assumed t o  be performing a single-axis compensatory 

tracking task i n  the presence of a low frequency random-appearing forcing 

function. A t  t rans i t ion  the controlled element changes instantaneously 

from one form t o  another. 

response from the  time of t rans i t ion  u n t i l  the system er ror  returns t o  

and r e n i n s  within an acceptable threshold l eve l  following operator 

adaptation t o  the new dynamics. 

The problem i s  t o  determine the operator 

Channel 
Coincidence - 1 

Transition data result ing from a f a i r l y  complete series of experiments 

have been published i n  references 4, 5 ,  and 8. 
of the staff of Bolt, Beranek, and Newman, Inc., these data have been used 

as the basis fo r  the  modeling e f fo r t s  reported herein. 
t h i s  section presents and describes t rans i t ion  response data obtained and 
previously published by BBN. 

With the kind permission 

The reminder  of 

- 

Experbental Conditione 

h 

The experimental configuration used i s  shown i n  f igure 1 .  

i s  shown in  the pretransit ion configuration with the operator, Yp, con- 
t ro l l i ng  Ycl i n  response t o  the  displayed system er ror ,  e. 

The switch 

The task was 

- ml &p-p Pret ransi yc, t ion 
- - 

Opera tor 

m2 

4 - 
I 

- 

Figure 1 .  Experimental configuration (ref .  7) 
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. 
t o  minimize 

dis come ctei 

the error .  A t  

Ye, and place1 

the time of t ransi t ion the switch instantaneously 

The channel coincidence Ycg i n  the closed loop. 

device prevented t h i s  from occurring u n t i l  the  outputs ml and q were 

approximtely equal, and the nntgnitude of the input ra te ,  I di/dt 1, w a s  

suff ic ient ly  large. Th i s  prevented any discontinuities from occurring i n  

the displayed er ror  which might have alerted the operator, and the f i n i t e  

rate l imitation insured that the  system was not quiescent. 

The forcing function, i, was a low frequency random-appearing signal 

having a rectangular spectrum with a 1.5 rad/sec cutoff frequency, as 
shown i n  figure 2. It was obtained 

by summing a number of equal ampli- 

tude sinusoids w i t h  noncomensurate 

frequencies, and hence was Gaussian 

t o  a good approximation. Because 

of i t s  low bandwidth, the  forcing 
function looked approximtely l i k e  w(rad/sec) 

r L  ai i 

a ramp fo r  a second or so a f t e r  

the t rans i t ion ,  and like one- 
Figure 2. Forcing function spectrum 

half of one period of a sinusoid over a 3 sec interval .  

properties simplify the  subsequent analysis of the t rans i t ion  response data. 

These useful 

The nntnipulator was a l igh t  control s t ick which protruded through a 
c i rcu lar  hole i n  the r igh t  arm rest of a student 's  chair  on which the 

subject was seated. 

l e f t  o r  r i gh t  through approximately 43 deg, and it required about one 

pound f o r  mximwn deflection. 

It had a l igh t  spr ing  res t ra in t ,  it could be moved 

The operator was generally not a ler ted t o  the occurrence of the 

t r ans i t i on  by any stimulus other than system error .  
t rans i t ions  were presented i n  a random sequence, so the operator was 

uncertain about the nature of the next controlled element, and about the 

difference i n  order, gain, and polar i ty  between successive controlled 
elements. 

A number of different  



Data for S ~ l l f l e d  Controlled Elements 

I n  the f irst  series of experiments considered, the pretransi t ion and 
posttransit ion controlled elements took any of the forms K, K/s, o r  K/s2. 
The transit ion occurred a t  time to and involved a change i n  any o r  a l l  of 

order, polarity,  and mgnitude. Although simplified controlled elements 
were used, these can be good approximtions, i n  the region of crossover, 

t o  any of a much larger  c lass  of controlled element dynamics. 

The most useful d a t a  forms f o r  analysis a r e  time h is tor ies  of s t i ck  

motion, system output, and system error ,  because of the nonstationarity 

of the process. Data f o r  the f ive  t ransi t ions of Table I a r e  preser;ted 

i r  figures 3 through 7 taken from reference 5.  
runs, not ensemble averages. 

by comparing figures 5 and 7. 
t ive ly  unskilled operator, and the poorer control technique i s  evident i n  
the error  traces.  

a preliminary estimate of operator response technique. 

The records are individual 

The run-to-run var iab i l i ty  can be estimated 

Figures 4 and 6 present data f o r  a rela- 

These d a t a  are exploratory, of course, and provide only 

Some general features of the data t races  are worth discussion. 
top plot i n  each of the f ive  figures ac tua l ly  presents two traces,  system 

forcing f’unction and system response or output. 

The 

I n  a l l  cases the smoother 

TABU I 

SIMPLIFIED CONTROLLED EIZMEXP TRANSITION DAW 
(From ref. 3 )  

Figure 

~~ 

Transition 

+8 + +2 

+8 -+ +4/s 

-4/s2 --t +8/s2 

+2 + -8/s2 

+8/s2 -+ -16/s2 

6 

Operator s k i l l  l eve l  
~ ~ 

Well t ra ined 

Probably not well trained 

Well t ra ined 

Relatively untrained 

Probably w e l l  t rained 



System L! I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I ‘A 

Error r? - -rhrx -- 
- - 

A 
- - - 

- - 
~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~  

- - 

Forcing 
Function 

Stick 1 

2 cm 

Stick 

I cm 

2c;n 

Stick 

Error A 
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System r Response 

Forcing Funciion 
I I 1 l 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1  

2 cm 

Stick 

to 4 I-isec 

Figure 6. Transition from +2 t o  4 / s 2  ( r e f .  3 )  

2 cm 

Stick 

1 1 1 1  I 1  I I I I I I  1 1  I I I I I I  1 1 1 1 1 l I I I I I  
I cm 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l -  - - 
Error n - _ _  - - 

f i l l  I 1  1 1  1 I l I I  I I l  I l l l l l l l l i l i 1  I I I l ' I  l i t - -  

- 

10 I sec 

Figure 7. Transition from t8/s2 t o  -1 6 /s2  ( r e f .  5 )  

(lower frequency content) t race  i s  the forcing function. 

deflection traces f o r  the higher order controlled elements ( a l l  but f ig .  3) 
exhibit large amplitude motions w i t h  "limiting." 

peaks are  perfect ly  "squared off"  indicates that the l imiting did not 

happen within the operator, but occurred downstream, probably i n  the 

manipulator. 

s t i ck  had a t r ave l  of only 245 deg and required only one pound f o r  f u l l  
deflection. 

l imiting deflection. 

The s t i ck  

The f a c t  that the large 

hn ipu la to r  l imiting i s  reasonable, because the side-arm 

Thus, it would be very easy fo r  the operator t o  a t t a i n  a 
Note that the displayed e r ro r  did not l i m i t .  

8 



hta for Unetsble Controlled Elements 

Another s e t  of experimental results reported i n  reference 8 shows 
opemtor response t o  a step change i n  controlled element a t  time to of 

the  form 
h e  - r G1 

S 

The posttransit ion controlled element i s  unstable and involves an inte-  

gmtion plus a divergent inverse time constant, --a. Its gain m y  be of 

e i ther  sign. 

as those f o r  the data of figures 3 through 7. 
t ion  w a s  the low frequency random-appearing signal w i t h  a 1.3 rad/sec 

cutoff frequency of figure 2. 

The data were taken under the same experimental conditions 

The system forcing func- 

hta for  eight t ransi t ion mis wi th  mriaw va l~es  of the inverse 

time constant,-a, were considered. 

the t o t a l  attempted t ransi t ions of t h i s  ty-pe. 
+,he operator could not re ta in  control and the  experiment was aborted. 

Five of the eight successful runs have been selected t o  i l l u s t r a t e  the 
results. These show representative behavior and cover a range of values 

fo r  the inverse time constant. The five runs are presented i n  figures 8 
through 12 i n  the order of increasing diff icul ty .  

to, i s  shown approximtely i n  the figures. 
i n  the figures re la te  t o  the modeling analysis of Section 111. 

These represent about one h a l f  of 
In the balance of the runs, 

The t ransi t ion time, 

The times t l ,  t2, and t 3  shown 

In  about one half of the runs with t h i s  t ransi t ion the  operator l o s t  
control, probably due t o  some combination of the following factors:  

e Display limiting 

e a too large 

0 Forcing function 

Display l imiting makes it impossible t o  know the s t a t e  of e and 6 .  
i n  turn, can delay the operator's switching time and result i n  a Large 

overshoot and further limiting. When the inverse time constant i s  too 

large,  e and 6 build up rapidly and the display limits before the operator 

can effect control. 

incorrect operator response. 

This, 

The forcing function modifies e and i! and m y  cause 

9 



Slkk 

Figure 8 .  Transition from 4/s t o  4 / s (  s - 0.2) ( r e f .  8) 

Slick 

Figure 9. Transition from 4/s t o  +8/s( s - 0.4) ( r e f .  8) 

Slkk 

r t i u u U L ,  1 1 4 I 1 I I I 1 1 1 1 1 1 I 1 1 I I 1 I LLLj 

Figure 10. Transition from 4/s t o  43/s(s - 0.8) ( ref .  8) 
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Slick 

Figure 1 1  . Transition from 4/s to +8/s(s - 1 .O) (ref. 8) 

Slick 

Figure 12. Transition from 4/s to +8/s(s - 1 - 3 )  (ref. 8) 

1 1  



Transition Duration 

The er ror  t races  of the t rans i t ion  da+a  (pax-tizularly those of f i g s .  3 
through 7) indicate t h a t  operator adaptation* occurs within about 3 sec i n  

a l l  cases. 

average behavior observed i n  extensive experimental studies ( refs .  4, 5 ,  
and 7) by Elkind, e t  a l ,  of detection and adaptation times involving a 

var ie ty  of controlled elements and conditions. 

with Sadoff's resu l t s  f o r  h i s  fixed-cab ser ies  (ref. 3 ) .  

These f a i r l y  rapid t rans i t ion  times a r e  representative of the 

They a r e  a l s o  compatible 

It i s  obvious t h a t  the operator must adapt quickly t o  the new dynamics 
(or lose control) i n  the cases where the t rans i t ion  destabi l izes  the system 

(i .e. ,  increase i n  order, large gain increase, e tc . )  . 
t ions  where the system i s  not destabilized, there i s  no theoret ical  
necessity fo r  a rapid adaptation, however. That stable t rans i t ion  adapta- 
t ions a re  rapid as well i s  an experimental f a c t  demonstrated i n  reference 4 
for pure gain t ransi t ions and i n  reference 11 f o r  t ransi t ions w i t h  K/s 
controlled elements. 

i n  2 t o  3 see, even when the operator i s  not consciously aware that a 

t rans i t ion  has occurred. 

In  s table  t rans i -  

These references show tha t  adaptation i s  accomplished 

While there appears t o  be a large amount of data showing rapid 
adaptation times, these results a re  by no means universal. 

t ion  times were generally not observed by Sadoff ( re f .  3) i n  h i s  moving- 
cab cases w i t h  the center-stick manipulator. In  the data shown f o r  the 

side s t ick under moving-cab conditions, however, the mean square e r ror  

increases only a small amount following t rans i t ion  and r emins  constant 

f o r  about 20 t o  30 see. 

rapid, and the  s ignif icant  features  of the data correspond t o  a post- 

t ransi t ion adjustment phase. These longer apparent t rans i t ion  times might 

be a t t r ibu tab le  t o  differences between the center-stick and side-stick 

Rapid adapta- 

This suggests that the adaptation may have been 

~~ ~ 

*Adaptation time i s  roughly the time a t  which the  t rans i t ion  response 
i s  completed, the operator has assumed the approximte form of the post- 
t ransi t ion steady-state describing function, and has s ta r ted  reducing 
residual e r ro r  t o  the asymptotic value. 

12 



mnipuhtors .  This does not appear too l ikely,  however, since reference 12 

shows that the operator adjusts h i s  neuromuscular system characterist ics t o  
account f o r  mnipulator  differences and exhibits roughly the same describ- 

ing function over a broad range of devices. 

Sadoff's fixed-cab conditions a re  generally compatible w i t h  the data 

Specifically, i n  three out of the f ive  cases shown i n  figures 3 through 7. 
f o r  fixed-cab center-stick control shown i n  reference 3 ,  adaptation was 
accomplished i n  3 t o  6 sec. 

data f o r  similar experimental conditions appears t o  obtain. 

Thus, reasonably good correlation between 

The t rans i t ion  times observed by Sheridan (ref. 1 )  were not rapid 

either;  however the  controlled element variations occurred slowly with 
respect t o  typical  adaptation t i m e s  f o r  step transit ions.  

cluded that  he observed a posttransit ion adjustment phase characterist ic 

ra ther  than the step t rans i t ion  phenomena studied herein. 

It m y  be con- 



111. 

The objective of th i s  study i s  t o  obtain a model of the operator 's  

dynamic response from the time of t rans i t ion  u n t i l  the system e r ro r  

returns t o  within an acceptable threshold following operator adaptation 

t o  the new dynamics. Several types of t ransi t ion models were considered 
a t  the outset of the study. These ranged from those which vary continu- 

ously w i t h  time i n  the mnner of a learning servo, t o  ones which consist 
of a switched sequence of d i s t i nc t  modes having fixed character is t ics .  

O f  these, the mode-switching m o d e l s  are the only ones supported by the 

data. For exaq le ,  a succession of d i s t i n c t  modes is  strongly suggested 

by the sequence of d i s t i nc t  levels  i n  the e r ror  response data of refer- 
ence 3. As a resu l t  of these considerations, mode-switching models a r e  

the only ones considered i n  t h i s  report. 

T h i s  section cf the report examines the data of Section 11, ultinnztely 

deriving a mode-switching m o d e l  by induction. 

and analyt ical  interpretat ions are commingled t o  some extent i n  order t o  

best  accomplish the m o d e l  derivation. 

Observations of the data 

Tsrqgorrrl Phase8 of a Trrcnsltlon Model 

The available data suggest that there m y  be several  temporal phases 

i n  the operator's response t o  a controlled element t ransi t ion.  Under 

t h i s  hypothesis, the several  phases of a mode-switching model are defined 

and examined below wi th  frequent reference t o  the data of Section 11. 

Pretranslt lon retention. I n i t i a l l y ,  the operator a c t s  as i f  the 

controlled element dynamics have not changed, and h i s  adapted form, Yp,, 

remins that pertinent t o  Yc, . An incorrect s t i ck  deflection, c ( t )  , 
results;  and the e r ror  increases according t o  Yp,Yc2 and the forcing 

function. 

t o  exceed some er ror  amplitude, and the  operator 's  minimum latency i n  

limiting cases. 

detected that the controlled element has changed, but he does not know 

i t s  form or  gain.  

The duration of t h i s  re tent ion phase i s  governed by the time 

A t  t he  end of the retent ion phase the operator has 

14 



The retention phase was first shown by Sadoff f o r  both moving-cab and 

in-f l ight  s i tuat ions.  

first corrective response is  clear ly  evident i n  the s t i ck  deflection 

t races  of figures 3 through 7. In figure 3 s t ick  deflection ra te  is  
approximtely constant a f t e r  to and before the first l i t t l e  upward move- 

ment on the trace.  Similarly, i n  the KC2/s data (f ig .  4) the retention 

i s  apparent during the 0.5 sec following to and before the sharp upward 

movement on the s t i ck  deflection trace.  

f igures 5 through 7, a l l  involve a sign reversal i n  the controlled element 

which leads t o  a w e l l  defined s t ick  reversal a t  the end of the retention 

phase, and the retention duration is  readily recognizable i n  the data. 

Retention behavior following to and pr ior  t o  the 

The higher order t ransi t ions,  

Transitions t o  the unstable controlled elements (figs.  8-12) a l l  show 

well  defined retention phases. 

terized 5j; a s~ficien, mpid corrective s t ick movement t h a t  occurs a t  t i m e  

t i  shown on the d a t a .  

and 12. 

The end of the retention phase i s  charac- 

This movement i s  particulary apparent i n  figures 10 

Q t h l  control. The operator's tasks following t rans i t ion  detection 

a r e  t o  arrest the ra te  of divergence and reduce the e r ror  t o  some to le r -  

able threshold level.  

o p t i m l  mode of control following t ransi t ion detection. 

t rans i t ion  time, a t ime-optiml o r  bang-bang m o d e l  i s  hypothesized f o r  
t h i s  phase. 

t i m e - o p t h l  response, that i s  suff ic ient  t o  validate the model, a t  least 
as a useful  l imiting case. 

i n  Section I1 supports a t ime-optiml response model as an appropriate 
idealization. 

The best  way t o  accomplish t h i s  i s  t o  switch t o  an 
For minimum 

Note t h a t  i f  only one set of data is  found which evidences 

A considerable part of the experimental evidence 

The avai lable  data f o r  Yc2 = Q2/s2 presented i n  figures 5 and 7 
suggest that a well  trained operator responds i n  a way that i s  approxi- 

mteiy time-opthi. 

by a r e l a t ive ly  long duration deflection or bang between t l  and t2 .  
corresponds t o  the t ra jectory between points t l  and t 2  for fixed bang 

amplitude on the i l l u s t r a t i v e  phase plane of figure 13. 
function contributes a low frequency bias over the t ransi t ion duration 

Tfie figirs 5 dz+s shcv a reversal a t  t l  followed 

This 

The forcing 
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7 for 
Figure 13. Phase plane t r a j ec to  

time-optirnal control of K , ~ / S  

which can be neglected i n  the phase plane t o  a first approximation. 
time t 2  another reversal  occurs, and the system follows the zero t ra jec-  

to ry  in to  the phase plane origin,  arr iving a t  t i m e  t3, corresponding t o  

the bang between times t 2  and t3 i n  figure 5 .  A t  time t 3  the e r ro r  and 
er ror  r a t e  a re  within the threshold region, the operator 's  deflection 

goes to  zero, and he effect ively "shuts off"  t h i s  phase of the t rans i t ion  

response. 

as evidenced by: 

A t  

Thus, the figure 5 data exhibit  nearly time-optirnal response 

0 The fixed bang amplitudes 

0 The minimum number of reversals 

0 O n l y  one er ror  peak w i t h  essent ia l ly  no overshoot 

The data i n  figures 6 and 7 show one extra reversal  and an addi t ional  
bang of short duration. 

ing time, t2,  caused by the forcing function. It could correspond t o  
chatter i n  a subopt iml  control mode  near the e r ro r  threshold region. 

Th i s  m y  re su l t  from an e r ro r  i n  operator switch- 

In figures 3 and 4 the  polar i ty  of the controlled element does not 
change, and the time-optimal response following retent ion would be t o  

make a steplike increase i n  the magnitude of the s t i ck  deflection, c ( t ) ,  

16 



t o  the bang amplitude. 

not evident i n  these dataj instead, the operator reverses 
The s t ick  would not be reversed. This i s  

the  s t ick  
ihcorrectly i n  each case, followed shortly by a second corrective reversal. 
The cause of these "reversal errors" appears t o  be that these nonpolarity 

reversal  Y, tmns i t i ons  were mixed i n  an experimental sequence with the 

others ( f igs .  3 -7). 
-- ad hoc because the penalty i n  terms of loss of control f o r  f a i l i ng  t o  

reverse i n  the reversal  cases i s  suff ic ient ly  greater than t h a t  incurred 

by a reversal  error .  

f igures 3 through 7 where a l l y c  polar i ty  reversal  cases were of high 

order and d i f f i c u l t  t o  control, while the nonreversal cases were of lower 

order and the e r ror  response t o  c ( t )  was prompt, easily recognized, and 

readily controlled. 

reversal  error ,  and it w i l l  not be included as an essent ia l  feature of the 

Perhaps the operator adopts t h i s  reversal  strategy 

This is  par t icular ly  evident i n  the samples of 

In the idea l  case the operator shouldn't mke the 

model. The poss ib i l i ty  

less ,  par t icu lar ly  when 

hood of a sign reversal  

The data of figures 

t rans i t ions  of the  form 

ought t o  be considered i n  an application neverthe- 
the odds, penalties, o r  t ra ining favor the likeli- 

a t  the t i m e  of Yc t ransi t ion.  

8 through 12 correspond t o  controlled element 

The post t ransi t ion controlled element involves an integration plus a 
divergent inverse time constant, -a, and i t s  gain may be of either sign. 

The normlized phase plane f o r  time-optirnal control of t h i s  t rans i t ion  is  

given in f igure 14 f o r  the polar i ty  reversal case. 
i s  from time to t o  t l .  

phase occurs a t  time t l .  

control phase is  required a t  time t2. 

t ra jec tory  t o  the origin, the t ransi t ion response i s  shut off a t  time %3, 
and the adjustment t o  posttransit ion steady-state tracking i s  made. 

The retention period 

The s t i ck  movement t o  s t a r t  the optimal control 
A reversal  t o  the second bang of the optimal 

The state then moves along the zero 

System control between times t 1  and t 3  is  given by the  block diagram 

It is seen that the  t ra jec tor ies  i n  figure 14 are not synrmetrical 

Of f igure  15. 

tory.  

The nonlinear computer reverses control a t  the zero t ra jec-  



+3 

Figure 14. Phase plane t ra jectory f o r  time-optirnal control 
of Kc,/s(s - 4 

r----- i I--- 1 ---- 

I I 

Figure 13. Time-optirnal control f o r  unstable controlled element 
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about the e/MKc2 axis  because of the negative damping term. 

from t l  t o  t 2  through the point e0/W2 i s  given ( in  the  polar i ty  reversal  

The t ra jectory 

Stick 
Deflect ion 

-M 

During the  i n i t i a l  part of the t ra jectory a f t e r  t i ,  the negative damping 
is  opposing the applied torque and the system divergence i s  halted rather  

slowly for a given s t i ck  deflection, M. 

i t s  mgnitude builds up rapidly because the applied torque i s  now aided 

by the negative damping. 

converges rather slewly t o  the origin according t o  the equation 

Once the error rate changes sign, 

Following the  reversal a t  t i m e  t2,  t he  e r ro r  

M L /  

t 

- 

The shutoff t i m e ,  t3, i s  highly c r i t i c a l ,  and a s l igh t  delay resu l t s  i n  a 

rapid divergence and consequent e r ror  overshoot. 

Idealized s t i ck  deflections and consequent e r ror  t z c e s  corresponding 

t o  the m o d e l  response of f igure 14 are sketched i n  figure 16. Several 

to t l  12 '3 

System 

Figure 16. Ideal response 
f o r  ~ , / s  - h 2 / s ( s - a )  t ransi t ion 



qualitative features that should be evident i n  any o p t i m l  response data 

f o r  t h i s  type of t rans i t ion  are noted from figures 14  and 16: 

0 

0 

The retention phase should be re la t ive ly  short when Yc 
changes sign, due t o  the rapid buildup of e and 6 
The duration ( t2  - t 1 )  of the f irst  bang should be 
re la t ive ly  long in  the case where Yc changes sign, 
and short when it does not 

The s t i ck  reversal  (at t 2 )  should occur shortly 
after 0 changes sign 

0 

The data of figures 8 through 11 (sumarized i n  Table 11) show 

essent ia l ly  optimal response f o r  t h i s  phase. 

t race i s  E? good clue t o  the degree of op t iml i ty .  In  the near-optimal 

cases there i s  only one dominant e r ro r  peak with l i t t l e  overshoot. In 
figures 8, 9, and 11 the reversals a r e  well  defined. In  figure 10 the 

second reversal  i s  composed of pulselike steps. 
is  near-opt-1 despite the pulsing i s  borne out by the data er ror  trace.  

The effect  of the pulsing on the phase plane t ra jec tory  can be shown as 
follows. 

having the  corresponding phase plane t ra jec tory  sketched i n  figure 17b. 
It appears that the pulses are jus t  'lcautious steps" by the open to r ,  
and are  good approximations t o  the single o p t i m l  reversal  of the model 

The nature of the e r ro r  

T h a t  the aggregate e f fec t  

Consider the idealized pulsing s t i ck  deflections of figure 17a 

a t  time t q .  

& 4 

m 

I - e  

Actual 
Optimal 

a. Stick deflection b. Phase plane 

Figure 17. Effect of pulsel ike control 
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TABLE I1 

DATA DESCRIPTION 

F i r s t  reversal w e l l  
defined . Second revelr 
sal a t  t 2  composed of 
pulselike steps; see 
discussion and figure. 
Bang amplitudes are 
approxim t e ly  two- 
th i rds  s t ick  l i m i t .  

Fig. 
no. 

8 

9 

10 

1 1  

Reversals and bangs 
are w e l l  defineii. " i 3 x  
amplitudes are about 
three-fourths s t i c k  
l i m i t .  Extra  s t i ck  
reversals are required 
due t o  overshoot. 

Transition 

4 -8 
+ -  S - qFxg 

4 +8 + -  - . 
S S(S - 0.4) 

4 -8 
+ -  S - qF=mq 

4 +8 
+ -  S - qz=Tq- 

4 +8 + -  - 
S s(s  - 1.3) 

Stick deflection 
record 

I n i t i a l  bang a t  t i  
builds up gradually. 
Second reversal i s  
w e l l  defined. Bang 
amplitudes are approx- 
i m t e l y  two-thirds 
s t i ck  l i m i t .  

~ ~~~ 

F i r s t  bang and rever- 
sal  a t  t 2  a re  w e l l  
defined. Bang ampli- 
tudes are appraxi- 
mately two-thirds 
s t i c k  l imi t .  

Reversals and bangs 
are w e l l  defined. 
Bang amplitudes are 
approximately two- 
th i rds  t o  three- 
fourths s t ick  limit. 

Error record 

Near optirnal response, 
9s evidenced by lack 
of e r ror  overshoot a t  
t i m e  t3. 

Delay of reversal a t  
t;! resu l t s  i n  smll 
er ror  overshoot pr ior  
t o  sh1Jt.of f . 

Near-optiml response, 
as evidenced by lack 
of e r ror  overshoot a t  
time t3. 

Delay of reversal a t  
t 2  resu l t s  i n  smll 
er ror  overshoot pr ior  
t o  shutoff. 

Delay of reversal a t  
t2 resu l t s  Fn error 
overshoot. Greater 
in s t ab i l i t y  of system 
resu l t s  i n  increasing 
task diff icul ty .  

21 



Figure 12 shows nonoptirnal response, presumably due t o  the large value 

of a, 1.3. 

successflrl control, as shown i n  reference 13. 
operator over a 4 min. period i n  a nontransition stationary tracking task 

i n  t h e  presence of the same forcing function used herein. By comparison, 
i n  the stationary case with a = 2  the operator frequently loses  control 

after only 20 t o  30 sec of tracking (ref. 14). 

A reasonable upper l i m i t  of a i s  about 1.5 f o r  assurance of 

This i s  f o r  a skil led 

The operator appears t o  be near-optimal more frequently i n  the 

t ransi t ions t o  the unstable second-order controlled element than f o r  the 

simpler controlled elements, G2, Kc2/s, and Kc2/s2. This may be due t o  
any or a l l  of the following factors :  

mek difficulty. 
simpler controlled elements, and the  operator must be a 
be t t e r  controller t o  re ta in  control. 

Task is  more demanding than with the 

T m U .  
since these t ransi t ions were run toward the end of the  
experimental program after the simpler t rans i t ions  (ref. 8) 

Operator was more practiced and experienced, 

The base case f o r  these t rans i t ions  was always 
t rans i t ion  t o  the unstable second-order Yc2 w i t h  

some nominal a was a certainty.  
detection and ident i f icat ion process. 

Th i s  could simplify the  

Evidence from nontransition control tasks  ex i s t s  t o  suggest that the 

OperatOr,haS a time-optiml capabi l i ty  which can be u t i l i zed .  

of experiments reported by Smith (ref. 15) the operator was to ld  t o  t rack 

a "friction plus mass" controlled element "as fast as possible, or w i t h  

the minimum of time delay." 

response was that of a nonlinear time-opt-l controller.  
(ref.  16) which used a phase plane display i n  a compensatory task  show 

t h a t  t h e  operator can respond time-opt-lly when given adequate switching 
informtion. 

manipulator i n  control of K/s2 forced the  operator i n to  a bang-bang mode 
and resulted in a stable limit cycle i n  the threshold region near the 

origin.  More recent results obtained by Young and Meiry (ref. 18) using 
a third-order controlled element shared evidence of nonlinear bang-bang 
control by the operator. 

In a series 

In  25 percent of these cases the operator 

P l a t z e r ' s  data 

The experiments of Pew (ref. 17) which employed a relay 
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Identification of Yc2 i s  important i n  determining the appropriate 

t,$me-optirnal control l a w  t o  use during th i s  phase. One method by which 
the operator m y  ident i fy  the controlled element i s  t o  use the basic 

property of the change i n  e r ror  due t o  h is  step change (or reversal) i n  

c ( t )  following retention. These properties a r e  sumnarized i n  Table I11 

f o r  various orders of Yc2. 

function of the posttransit ion controlled element under t h i s  hypothesis. 

A detailed investigation of detection and ident i f icat ion is  reported by 

Miller i n  reference 9. 
TABLE I11 

Notice that the ident i f icat ion is  only a 

EFFECT OF STICK RFVERSAL ON EXROR SIGNAL 

Controlled element, i Change i n  error signal 
due t o  s tep stick reversal 

Step change i n  error,  e ( t )  

Step change i n  error  ra te ,  &(t) 

I Step change i n  e r ror  acceleration, 'e(t) I I 
POsttraneitioa steady state. A t  the end of the t ime-optiml control 

phase, the e r ror  and i t s  derivatives a r e  reduced t o  within some threshold 
level.  The operator then mkes a mode switch t o  the steady-state quasi- 

l i nea r  describing function form appropriate t o  the new controlled element. 

T h a t  the  operator eventually assumes a steady-state adaptation t o  the new 

controlled element i s  evident in a l l  the data. The er ror  and s t i ck  

deflection t races  i n  the data of Section I1 indicate that t h i s  adaptation 

happens ra ther  quickly, par t icular ly  i n  the more d i f f i c u l t  t ransi t ions.  

Also, by mode-switching from bang-bang k i u - ~ p t i i i z s l  e c r t m l  t.n quasi- 

l i nea r  control  when the er ror  and error  r a t e  are reduced t o  within some 
threshold, the problem of l i m i t  cycling near the or igin which would occur 

i n  the  nonlinear m o d e l  i s  avoided. This  adjustment t o  the posttransit ion 

steady s t a t e  with i t s  quasi-linear control is  the last phase of the mode- 
switching model. 
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The Resultant Tmnsition Model 

The data of Scction I1 appear t o  confirm the time-optirnal control 

mode-switching model t o  the extent that it i s  a good simplification of 

and mean estimator fo r  operator t rans i t ion  response behavior. 
successive control m o d e s  used t o  explain operator response actions 

following a step change i n  controlled element among the  general forms K, 

K/s, and K/s2 a r e  sumrmarized i n  Table IV. 
period between pretransi t ion and post t ransi t ion steady-state tracking is  

defined i n  terms of e i the r  duration, solution t o  an o p t i m l  control 

problem, o r  Ypl and Yp2. 

The three 

Operator behavior i n  the  en t i r e  

Prediction of t rans i t ion  behavior would proceed i n  the  stepwise mnner 

outlined i n  Table IV. 
f o r  various controlled elements. 

plane analysis w i t h  the  delected form of controller.  
and error  r a t e  a r e  reduced t o  within some threshold level ,  a mode-switch 

t o  the quasi-linear describing function f o r  post t ransi t ion steady-state 
control i s  mde. 

controlled element was examined i n  f igures  14 through 16 i n  connection 

w i t h  the  data interpretation. Similar analyses f o r  K/s and K/s2 post- 
t ransi t ion controlled elements are given below. 

The retention phase has a duration based on data 

The next phase might involve a phase 
When system er ror  

The o p t i m l  response phase f o r  the unstable second-order 

I n  the G 2 / s  case, the o p t i m l  control phase of the m o d e l  takes  the 

simple form of figure 18. 

a t o r  block-only the relay. 
No nonlinear computer i s  required i n  the oper- 

The nornmzlized phase plane t r a j ec to r i e s  f o r  

---- 1 I----, 1 r 

Figure 18. Time-optimal control  f o r  f i r s t -o rde r  system 
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constant s t i c k  deflection, My are  as shown i n  figure 19. 
t rans i t ion  the error  and error  r a t e  move in$o the first or t h i r d  quad- 

r an t  of figure 19, depending on Y Ye 
function). 

operator reverses the s t ick  due t o  the e r ro r  buildup. 
instantaneously along the l i n e  t l  - t l  i n  figure 19 a t  the t i m e  of reversal  

because Yc2 i s  f i rs t -order .  

control phase, and the t ra jectory goes d i r ec t ly  in to  the threshold region. 

A t  point t3 the control mode switches t o  quasi-linear control appropriate 

t o  the post t ransi t ion steady state, and the  deflection returns t o  zero. 

Note that aoy posit ive deflection, M, following the reversal  i s  acceptable, 

and the  key control problem is  the shutoff time. 

Fallowing 

(and, i n  practice, the forcing 
p1 2 

A s  the divergence moves t o  point t l  on the phase plane, the 

The system moves 

Only one bang is  required during the optimal 

e/ K, 
2 

I I L L i n e o r  Region 

Figure 19. Phase plane t r a j ec to r i e s  f o r  f i r s t -order  system 

The ef fec t  of forcing function can be qui te  s ignif icant  in the first- 

order case. 

phase, because it can mke the system state (e and 6 )  appear t o  be diver- 

gent i n  the first quadrant of figure 19 ( for  example) when it is  actual ly  

convergent i n  the fourth quadrant. This results i n  an incorrect reversal  
of the stick. 

It m y  result i n  incorrect  behavior i n  the optimal control 
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For the second-order controlled element t ransi t ion,  G2/s2, the optimal 

control phase block diagram takes the form of figure 20. The nonlinear 

I--------- 1 

Figure 20. Time-optinal control for second-order system 

computer reverses the control a t  the zero t ra jectory or  switching line. 
The switching l i nes  f o r  the YC2 = Kc2/s2 case alzd zero forcing function 

are given by 
2 = - v m s g n e  

The normlized phase plane po r t r a i t  and switching l i nes  f o r  t h i s  second- 

order system a r e  given by the parabolic t ra jec tor ies  i n  figure 21. 

Figure 21. Phase plane t ra jector ies  for  simple seoond-order system 
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During the retention phase immediately following the t rans i t ion  t o  
2 h 2 / s  , the operator attempts t o  reduce the e r ror  with h i s  pretransi t ion 

adaptation. 

third quadrant of the phase plane, depending on Yp,YC2 and ( to  a small 
extent) the forcing function. 

figure 21 leads t o  the f i r s t  bang of the optimal control phase. 
resul ts  i n  a t ra jectory which i s  stable u n t i l  the  switching l i ne  o r  zero 

trajectory i s  reached. 

r a t e  t o  zero i n  an optimal way. 
when the zero t ra jectory i s  reached. 

l inear  control a t  t3 when the  e r ror  and er ror  r a t e  a r e  reduced t o  within 

a threshold region near the  origin.  

operator appears t o  overshoot the zero trajectory.  

the region of the origin,  but requires an additional reversal  and a short  

duration bang t o  r emin  within the e r ro r  threshold. 

other hand, h i s  response appears t o  be near optimum w i t h  negligible 

overshoot . 

The er ror  and er ror  r a t e  increase in to  e i the r  the f irst  or  

The reversal  a t  t 1  on the phase plane of 

It 

The next step i s  t o  reduce the e r ror  and e r ro r  

T h i s  requires a second reversal  a t  t 2  

The model mode-switches t o  quasi- 

In  some data (e.g., f i g .  7) the  

Th i s  m y  put h i m  i n  

In  figure 5 ,  on the 

The derived model has the d i s t inc t  advantage for predictive purposes 

that one can apply time-optimal control theory t o  manual control problems. 

It appears t o  be a reasonably close approximation t o  a l l  the l imited data 
available and i s  the only model which w i l l  provide an accurate description 

of those data which a re  indeed time-optim.1. 

and models f o r  the optimal control phase a r e  possible a l te rna t ives ,  but 

t o  validate t h e i r  use requires (1 ) demonstration that the  operator response 

i s  not time-optiml, and (2) suf f ic ien t  experimental evidence t o  permit a 
choice between competing subopt iml  forms. 

Suboptiml interpretat ions 

Limitations of the Transition Model 

The duration of the retention phase i s  not given by a set of log ica l  
rules  in the model. 

cri terion. 

d i f fe ren t ia l  controlled elements a r e  known experimentally, however, and 

typical  resu l t s  a r e  shown i n  Table IV. 

It depends on the operator t rans i t ion  detection 
Retention durations f o r  a var ie ty  of controlled elementti and 
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The amplitude of the bangs i s  not given by the model. Some mximum 

deflection w i l l  be used with a free-moving manipulator, while a mximum 

force leve l  w i l l  be used with an isometric device. 

The e f fec t  of forcing function m y  be important. 

from response data f o r  a low frequency random input. 
inputs could modify the results; however, they a re  unlikely t o  be 

encountered i n  a closed-loop vehicle analysis. 

lead t o  analyt ical  d i f f i cu l t i e s  i n  the o p t i m l  control phase i n  predictive 

applications of the model. Inclusion of the input e f fec t  i n  a phase plane 

analysis is  laborious and inexact, and analog o r  d i g i t a l  computation m y  

simplify t h i s  aspect of response prediction. 

The model i s  derived 

Higher frequency 

The forcing function m y  

As proposed, the model w i l l  explain o r  predict operator response 

during t rans i t ions  among controlled elements of the f o m  X, K/s , K/s2 , 
and K/s(s - a). 
appl icabi l i ty  t o  other controlled elements. 

Additional data are required t o  sustain i t s  more general 

Experimental resu l t s  obtained by Sadoff ( ref .  3)  i n  a moving-cab 

simulator with a center-stick mnipulator do not agree w i t h  extant fixed- 

base data, or  w i t h  moving-cab data with a side s t ick.  

derived models based on these data a r e  apparently not applicable t o  con- 

t ro l l ed  element t ransi t ions i n  moving cabs w i t h  center s t ick.  

l i m i t  the appl icabi l i ty  of the derived model t o  the in-f l ight  t rans i t ion  

problems which a r e  of prime interest .  

Consequently, 

This m y  



A mode-switching model of the hunrtn operator during controlled element 

t ransi t ions has been derived on the basis of extant data. Three successive 

control modes are used t o  explain operator response following t rans i t ions  

among the forms K, K/s, K/s2, and. K/s(s - a). 
ent i re  period between pretransit ion and posttransit ion steady-state track- 

ing is  defined in terms of e i the r  duration, solution t o  an optimal control 
problem, o r  Y and Y 

Operator behavior i n  the 

P1 p2 
aoaolucl&or?e 

Operator response and adaptation t o  s tep changes i n  the controlled 

element occur quickly, and i n  most cases are completed within a f e w  
seconds. 

t i on  i n  the controlled element gain, which are not consciously detected by 

the  operator u n t i l  long a f t e r  h i s  adaptation is  completed. The only known 

exceptions are the resu l t s  obtained i n  the moving-cab with center-stick 

mnipuh to r .  

This i s  t rue  even f o r  t rans i t ions  involving only a smll reduc- 

The mode-switching m o d e l s  are the most appropriate with which t o  

characterize operator t rans i t ion  response. 

w i t h  time, f o r  example learning servos, do not appear t o  be valid. 

i s  par t icular ly  evident in the l i gh t  of Sadoff's e r ro r  d a t a  which show 

tha t  t h e  control technique changes do occur suddenly. 

Models which vary continuously 

This 

There a r e  suff ic ient  data which demonstrate nearly t ime-optiml control 

chamcter i s t ics  t o  say that  t h i s  form of control i s  a valid intermediate 

phase in the t rans i t ion  m o d e l .  Conversely, it i s  the only form of model 
which w i l l  explain those response d a t a  which are indeed time-optimal. 

The model describes the t rans i t ion  data i n  the simplest way, and i n  

a minimum number of steps. 
t ion  and posttransit ion steady-state charac te r i s t ics  of the operator. 

It t ies  i n  d i r ec t ly  with the known pre tmnsi -  



Additional experimntalwork i s  needed t o  validate the proposed 
t ransi t ion m o d e l ,  and the nature of t ransi t ion response should be measured 

i n  d e t a i l  f o r  a more complete set of t ransi t ion situations.  

the e f fec t  of the following experimental variables should be examined: 
In  addition, 

Foralzqq function. The effect of forcing function bandwidth should be 

determined, from both the standpoint of operator response and the effect  

on analytic predictions with the m o d e l .  

%sk order. The ef fec t  of sequence of t ransi t ion and number of 

a l ternat ives  should be studied more fully, as w e l l  as the e f fec t  of the 

difference between the pretransit ion and posttransit ion controlled elements. 

A ra t ional  basis f o r  the prediction of reversal errors S ~ G M  be established. 

bthn o w e .  The effect  of motion cues on t ransi t ion response should 

be examined i n  more de ta i l ,  i n  order to  determine why the experimental 

resu l t s  i n  the moving-cab case d i f f e r  from those fo r  %he larger body of 
f ixed-hse  data. 

Di813hy. The results of reference 16 suggest that the use of a phase 

plane display ( 6  versus e) by a trained operator yields a substantial  

improvement i n  per fomnce  over the one-dlmensional compensatory display. 

A similar improvement m y  occur during transit ions.  

Tmhhg. 
during t ransi t ion,  suggesting that any one of several a l ternat ive con- 

t r o l l e r  forms might resu l t  from the learning process. 
who evidences suboptiml response can be instructed i n  the  best way t o  

obtain more optimal t ransi t ion response and hence better perfonrance. 

The data show both o p t i m l  and suboptiml behavior modes 

Perhaps an operator 
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